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ABSTRACT 
In this paper, bi-directional data transmission protocol between two micro-controller boards connected via SPI-

Interface is presented. SPI-Ring Protocol is developed as a new transmission protocol for this purpose.  In this 

connection, one of the controller acts as a master device while the other acts as a slave device.  

 

SPI-Ring protocol is mainly developed in order to connect two MD100-PLCs [MD100 Programmable Logic 

Controller]. Total I/O lines of the MD100-PLC become sometimes insufficient for the process under control. 

Connection of two MD100-PLCs forms modular MD100-PLC system having doubled I/O lines and suggests a 

reliably solution for the cases where the I/O lines of a single MD100-PLC are not adequate.  

 

The SPI-Ring Protocol is fully implemented in software for both master and server side devices in assembler 

language. Two test cases are created to test the SPI-Ring Protocol. Snapshots from the KUMANDA (The 

complete Program Development Environment for MD100 Programmable Logic Controllers developed in C++) 

showing the test programs are given. The programs are executed on the modular MD100-PLC system. States of 

the IO lines of the modular PLC-System are indicated in separate photos.  The results have proven full 

satisfaction.  

 

INTRODUCTION 
PLC is the abbreviation for Programmable Logic Controller. Among others, number of input/output channels, 

volume of program memory, volume of static RAM and micro-controller tact frequency determine resources of 

the PLC.  It is quite clear that the more the resources, the powerful the PLC is.  

 

Conventionally a PLC device has two base modules. They are the central processing unit (CPU) and I/O 

modules. For small PLC devices, micro-controller input/output lines cover the PLC I/O channels. I/O modules 

are not designed separately but put on the periphery of the micro-controller.  For such PLC devices, micro-

controller acts as CPU and micro-controller port lines act as I/O module so that base modules are embedded 

together. Such a system is called as a minimum PLC system.  

 

A practical way of doubling resources of minimum PLC system is to connect two identical minimum PLC 

systems over a serial bus with a definite protocol. MD100-PLC controller is developed as a minimum PLC 

device.  

 

In the next section, two MD100-PLC modules, connected through SPI interface in order to form modular 

MD100-PLC system, is presented.  
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MODULAR MD100-PLC SYSTEM 
MD100-PLC controller is developed as a minimum PLC device. Resources of MD100-PLC controller are 

adequate for many applications in industry. There are however plenty of cases where a minimum MD100-PLC 

controller is not capable of covering all needs. Especially I/O lines may not match for the requirements of the 

application. In those cases there is no choice other than replacing the PLC with that having more I/O lines. 

 

 
Fig.1: Schematic of the modular MD100-PLC System 

 

A practical and economical solution to the problem is presented in which two MD100-PLCs are connected via 

SPI interface forming a modular PLC-System with increased I/O lines. Schematic layout of the two MD100-

PLCs connected via SPI interface is given in Fig.1. They form together master-slave modular PLC-System with 

increased I/O lines. 

 

In this system, one of the controller runs as a master and the other as a slave. KUMANDA is the Integrated 

Development Environment for creating PLC program [1]. It runs on the programming device (PC).  The PLC 

program governing the process under control is loaded into the master device over RS232.  

 

The SPI-Ring Protocol is developed as the data transmission protocol between master and slave devices. Virtual 

PLC-Machine is pre-installed on the master device [2]. It runs the master-side implementation of the SPI-Ring 

Protocol.  A permanent firmware program running on the slave device runs the slave side implementation of the 

SPI-Ring Protocol. 

 

Scan Cycle of the Modular MD100-PLC System 

PLC-Scan cycle for the modular PLC system differs from that for the minimum PLC system. The PLC-Scan 

cycle for the modular PLC-System is illustrated in Fig.2.   

 

PLC-Scan cycle for the modular PLC-System consists of two separate scans; one is the MASTER-SCAN running 

on the master device and the other is the SLAVE-SCAN running on the slave device.  MASTER-SCAN does the 

same as in the PLC-Scan cycle in a minimum MD100-PLC except that it builds connection in SYSTEM-SCAN 

with the slave device by using the SPI-Ring Protocol. Master device uses this connection to perform the data 

transmission in order to exchange system variables among master and slave devices.   

 

The output variables OR00 and OR01 of the slave device are assigned to the output variables OR02 and OR03 of 

the master device. Similarly the input variables IR00 and IR01 of the slave device are assigned to the input 

variables IR02 and IR03 of the master device. This implies that from within the application program, the slave 

system variable IR00 is accessed through master system variable IR02 and the slave system variable IR01 is 

accessed through the master system variable IR03. In a similar manner, the slave output variables OR00 and 

OR01 are accessed through the master output variables OR02 and OR03 respectively.  
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The analog output variables AO00 and AO01 of the slave device are assigned to the analog output variables 

AO02 and AO03 of the master device. The analog input variables AI00 and AI01 of the slave device are 

similarly assigned to the analog inputs variables AI02 and AI03 of the master device. All analog variables are 

two-byte long and they are not shown in Fig.2.  

 

 
Fig.2: PLC-Scan Cycle for the modular MD100-PLC System 

 

Latest values of the output channels of the slave device are recalculated in the PROGRAM-SWEEP of the 

MASTER-SCAN and stored into the respective master system variables. The content of master system variables 

OR02 and OR03 are transmitted to the slave device over the SPI-interface using SPI-Ring Protocol in order to 

update the slave system variables OR00 and OR01. Slave output channels are updated through the slave system 

variables OR00 and OR01 in the OUTPUT-SCAN of the slave device.  

 

The current values of the input channels of the slave device are read in the input scan of the slave device and 

stored into the slave system variables IR00 and IR01. The content of slave system variables IR00 and IR01 are 

simultaneously transferred back to the master device as the slave receives master output variables OR02 and 

OR03.  These returned variables are used by the master device to update master input variables IR02 and IR03 

respectively.  The PROGRAM-SWEEP of the SLAVE-SCAN incorporates only NOP (no operation) plc-command 

which does no real operation.  

 

Register File of the MD100-PLC 

Because SPI-Ring Protocol operates on the register file of the MD100-PLC device, a little bit more explanation 

of the register file is needed. The register file is nothing else than the collection of the system variables. The 

system is actually a virtual PLC machine running on the master and slave device. Each variable is either one or 

two byte long RAM-cell or working register of the micro controller [3] [4] [5].  

Description of the registers, relevant to the SPI-Ring Protocol in the Register File of the MD100-PLC device, is 

given in Table.1.  
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Table.1: Register File of MD100-PLC 

Register File 

Register 

name 

Register 

index 

Working 

register 

Ram 

address 
Length Description 

IR00 00 - 0x0060 1 byte 
Digital input register–00. Keeps signal 

level of  digital input channels 0-7 

IR01 01 - 0x0061 1 byte 
Digital input register–01. Keeps signal 

level of  digital input channels 8-15 

IR02 02 - 0x0062 1 byte 
Digital input register–02. Keeps signal 

level of  digital input channels 16-23 

IR03 03 - 0x0063 1 byte 
Digital input register–03. Keeps signal 

level of  digital input channels 24-31 

OR00 00 - 0x0064 1 byte 
Digital output register–00. Keeps signal 

level of digital output channels 0-7 

OR01 01 - 0x0065 1 byte 
Digital output register–01. Keeps signal 

level of  digital output channels 8-15 

OR02 02 - 0x0066 1 byte 
Digital output register–02. Keeps signal 

level of  digital output channels 16-23 

OR03 03 - 0x0067 1 byte 
Digital output register–03. Keeps signal 

level of  digital output channels 24-31 

DATR - R01 - 1 byte 

Work register of micro controller. It is 

used as a temporary variable to assist 

execution of commands in slave device 

MOSI - R14 - 1 byte 
Work register of micro controller. It is 

used to keep MOSI byte. 

MISO - R15 - 1 byte 
Work register of micro controller. It is 

used to keep MISO byte. 

 

X 

XL - R26  1 byte Internally used. It has low (XL) and high 

(YH) parts each of which is one byte 

long. It is used as a pointer to address 

RAM and/or flash memory. XH - R27 - 1 byte 

 

Y  

YL - R28 - 1 byte Internally used. It has low (YL) and high 

(YH) parts each of which is one byte 

long. It is used as a pointer to address 

RAM and/or flash memory. YH - R29 - 1 byte 

VALU - - 0x024E 1 byte Keep value to be transmitted to the slave 

TARE - - 0x024F 1 byte 

Keep target register code which is to be 

updated in slave device by the value kept 

in register TARE 

RTVA - - 0x0250 1 byte 
Keep the value returned from the slave 

device  

AI00 
00 

- 0x023D 2 byte 
Analog input register low byte 

01 Analog input register high byte 
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AI01 
02 

- 0x023F 2 byte 
Analog input register low byte 

03 Analog input register high byte 

AI02 
04 

- 0x0241 2 byte 
Analog input register low byte 

05 Analog input register high byte 

AI03 
06 

- 0x0243 2 byte 
Analog input register low byte 

07 Analog input register high byte 

AO00 
00 

- 0x0235 2 byte 
Analog output register low byte 

01 Analog output register high byte 

AO01 
02 

- 0x0237 2 byte 
Analog output register low byte 

03 Analog output register high byte 

AO02 
04 

- 0x0239 2 byte 
Analog output register low byte 

05 Analog output register high byte 

AO03 
06 

- 0x023B 2 byte 
Analog output register low byte 

07 Analog output register high byte 

SLTY - - - 1 byte slave identification (type) 

SLOF - - - 1 byte slave identification (offset) 

 

Each variable has a symbolic register name and unique RAM address. Input and output registers have register 

index which enumerates them internally. They are spoken over their register index by the SPI-Ring Protocol. 

Registers, which are directly assigned to micro controller working registers R0 to R31, are accessed directly by 

assembler commands.  

 

SPI-RING PROTOCOL 
The SPI-Ring protocol is so designed that it encodes and decodes the data transmitted over the SPI-interface 

through the SPI-Ring protocol into the protocol commands. The master device encodes the single SPI-Ring 

protocol command and sends them to the slave device. The slave device decodes the received command and then 

executes it. 

 

Master device initiates the transmission by sending the content of the MOSI register to the slave device over the 

mosi (master out slave in) line. Before transmission, the content of the MOSI register is to be updated by the 

master device (Virtual-Machine).  As the content of the MOSI register is being transmitted over the mosi line, the 

master device receives data from the miso (master in slave out) line. The received data is placed into the MISO 

register of the master device at the end of the transmission.  

 

Slave device is requested by setting /SS signal low by the master device. As the slave device receives data over 

the mosi line, it sends back the content of its MISO register over the miso line simultaneously. The content of the 

MISO register must therefore be updated by the slave device (firmware) before it is transmitted. 

 

SPI-RING COMMANDS 
Table.2 lists valid SPI-Ring Protocol commands. Each SPI-Ring Protocol command is one byte long. It is stored 

in the MOSI system variable of the master device before it is transmitted. After reception of the command, slave 

device stores it in the MISO system variables and executes it. Slave device should be given an adequate time in 

between following commands so that it can execute the preceding command before receiving the next. 
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Table.2: SPI-Ring Protocol commands 

 

The abbreviation used in Table.2 for the individual bits in SPI-Ring command is as follows, 

(d/a)   : digital/analogue, 0 digital, 1 analogue.  

(i/o)    : input/output, 0 input, 1 output. 

(h/l)    : high/low, 0 high, 1 low.  

(d d d d)  : data bits (0 – 15 decimal value). 

(r  r  r  r ) : register index (0 – 15 decimal value).  

(-)  : don’t care bits. The position is not check and filled with 0.  

As can be observed from Table.2, each command is given a symbolic name. The Opcode is the hexadecimal 

reading of the command byte. Although it is theoretically possible to encode 256 different variations, only four 

main commands are defined by using most significant bits (C7 C6).  Data (d) and register (r) bits are the parts of 

related commands.   

 

Each bit in the SPI-Ring command has a definite meaning. Most significant bits C7 and C6 determine main 

commands. There are four main commands defined in the SPI-Ring Protocol. They are SBC (S0-SF), GM, DT 

and LD commands. The explanations is as follows, 

 

SPI-Ring Commands (Master) Operation in Slave 

Name Opcode 
Command Bits  

C7  C6 C5 C4 C3 C2 C1 C0  

SBC [Sub 

Commands] 

S0 0x60 0 1 1 - 0 0 0 0 reserved 

S1 0x61 0 1 1 - 0 0 0 1 MISO = SLTY 

S2 0x62 0 1 1 - 0 0 1 0 MISO = SLOF 

S3 0x63 0 1 1 - 0 0 1 1 SLOF = DATR 

S4 0x64 0 1 1 - 0 1 0 0 SLTY = DATR 

S5 0x65 0 1 1 - 0 1 0 1 reserved 

S6 0x66 0 1 1 - 0 1 1 0 XL =  DATR    

S7 0x67 0 1 1 - 0 1 1 1 XH =  DATR 

S8 0x68 0 1 1 - 1 0 0 0 (X)  =  DATR,  X+ 

S9 0x69 0 1 1 - 1 0 0 1 (X)  =  DATR 

SA 0x6A 0 1 1 - 1 0 1 0 MISO = (X) 

SB 0x6B 0 1 1 - 1 0 1 1 MISO = (Y), Y+ 

SC 0x6C 0 1 1 - 1 1 0 0 

YH = 0 

YL = (SLTB) 

MISO =( Y), Y+ 

SD 0x6D 0 1 1 - 1 1 0 1 reserved 

SE 0x6E 0 1 1 - 1 1 1 0 reserved 

SF 0x6F 0 1 1 - 1 1 1 1 reserved 

GM [Get Miso]  1 0 d/a i/o r r r r MISO = register(r r r r) 

DT [ DaTa]  0 0 0 h/l d d d d DATR(h/l) =(d d d d) 

LD [ LoadData]  1 1 d/a i/o r r r r register(r r r r) = DATR 
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 SBC (S0 – SF) (Sub-Commands) are operative commands.  Bits (C7 C6) are set to (0 1) and bit C5 is set to 

(1). Individual sub command is determined by least significant four bits of the command (C3 C2 C1 C0). 

There are total of 2⁴=16 sub commands. They are named through S0 – SF. The sub commands have fixed 

Opcodes. Operation dictated by these commands on the slave device is given in the last row of the Table.2.  

 

 GM (Get-Miso) command in which bits (C7 C6) are set to (1 0) gives instruction to slave device which 

register’s content should be returned over MISO register for the next SPI cycle. Slave device assign the 

asked register value to the MISO register. Hereby low nibble of the command specify register number. Bit 

(i/o) indicates if the register to be returned is of type input or output (input if (i/o) bit is equal to 0, output 

otherwise). Bit (d/a) determines that if the register is of type digital or analogue. If, for example, digital 

input register IR00 of the slave device is to be returned to the master device for the next SPI cycle, master 

device should issue the command 

(1000 0000)₂ = 0x80. 

If the low byte of the analog input register AI01, (register index equal to 2) should be returned then the 

corresponding command appears as   

(1010 0010)₂ = 0xA2. 

 DT (DaTa) command transmits 4-bit information (data) from master device to slave device. Bits (C7 C6) are 

set to (0 0).  The data is going to be assigned to the high or low nibble of the data register (DATR) in slave 

device depending upon the value of the (h/l) bit of the command. Data is carried by the low nibbles of the 

command (C3 C2 C1 C0). If for example high nibble of the data register DATR is to be replaced by the bit 

muster 1111 then the master device should issue the command  

(0000 1111) ₂ = 0x0F 

If the low nibble of the data register should be replaced by the bit muster then the corresponding command 

looks like 

(0001 1111) ₂ = 0x1F. 

 LD (Load-Data) command instructs the slave device to transport content of the data register DATR to the 

register whose register index is specified in the commands low nibble. Bits (C7 C6) are set to (1 1). For 

example, if the value of DATR register is to be assigned to the digital output register OR03, the master 

device should issue the command   

(1101 0011) ₂ = 0xD3. 

 If, for instance, IR01 is replaced with the DATR, the master should issue the command  

(1100 0001) ₂ = 0xC1. 

 

Implementation of SPI-Ring Protocol in Assembler Language 

Because MD100-PLC device uses AVR-Mega Series of micro controller as the central processing unit, the 

Virtual PLC-Machine building the PLC system on the micro controller is totally developed in AVR- Assembler 

language [6]. The SPI-Ring Protocol driver for master side devices are parts of the Virtual PLC-Machine and 

implemented likewise in AVR- Assembler language. Likewise the permanent firmware system program running 

on the slave device implements the slave side driver for the SPI-Ring Protocol.  

 

Three cascaded assembler routines are developed for the master side driver implementation of the SPI-Ring 

Protocol.  These routines are SpiTranmit, TrackSlave and SpiMaster.  For the slave side driver implementation, 

an interrupt service routine, OnSpiRcv, is developed.  All these routines are explained in the following sections 

in detail.  

 

SpiTransmit  

SpiTransmit is the low level kern routine which sends MOSI register by using the SPI-Interface. The 

initialization of the SPI-Interface is done automatically as the system is started. MOSI register is passed to the 

SpiTransmit routine as an argument. The incoming byte is stored in the MISO register. The host function 

(TrackSlave) which calls the SpiTransmit, must update MOSI register before calling the SpiTransmit routine. 
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TrackSlave 

To put the transmission in a more compact form, TrackSlave routine is designed. It is the host function calling 

the SpiTransmit. The objective is that, once,  

i. the value to be transmitted, 

ii. the slave target register to which the transmitted value to be assigned  

iii. and the slave register whose content is to be returned are specified  

The routine should manage the rest. Three system variables are defined for this purpose. They are namely 

VALU, TARE and RTVA registers. These registers are passed to the TrackSlave routine as static arguments. The 

upper level function (SpiMaster) which calls TrackSlave, must update these registers before calling the 

TrackSlave routine.   

 

 
Fig.3:  Flowchart for the function TrackSlave 

 

VALU register keeps the value which is going to be transmitted to the slave device. TARE register keeps (d/a) 

and (i/o) information bits together with the register index of the target slave register to which the transmitted 

value should be assigned by the slave device. TracksSlave function does not allow input registers as target 

register simply because input registers should only be updated by corresponding input channels in both devices. 

Therefore it sets (i/o) bit of the TARE register always high (=1).  Individual bits of the TARE register are seen as 

follows, 

-  -  (d/a)  (i/o=1)  r  r  r  r 

 

where (d/a) indicates if target register is of type digital or analogue, (i/o) indicates if target register is of type 

input or output and ( r r r r ) indicates the target register index.  
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RTVA register is updated by the content of the target register’s complement. Because the target register is 

always the output register, its complement is defined as the input register in the slave device whose register 

number (r r r r) and (d/a) bits are defined in TARE.  
 
In brief, TrackSlave function is called with current VALU and TARE registers in the SYSTEM-SCAN by the 

master device. The target register in the slave device is to be updated with the content of the VALU register after 

a successful call to the TrackSlave function. At the same time, the content of the target register’s complement is 

returned from the slave device and stored into the RTVA register in the master device.    

 

The flow chart of the host function TrackSlave is given in Fig.3.  As seen from the flow chart, the host function 

calls four times the low level transmission function SpiTranmit in order to establish a single task in which the 

target register in the slave device is updated and its complement is simultaneously drawn back to the master 

device.  

 

SpiMaster 

SpiMaster is the upper level function calling the host function TrackSlave. SpiMaster updates VALU and TARE 

registers and past them together with RTVA registers to the TrackSlave function.  SpiMaster calls TrackSlave six 

times in order to update output channels in the slave device and retrieves input channels from the slave device.   

 

Table.3 lists the tasks performed by the upper level function SpiMaster. Each task is a single call to the 

TrackSlave function. Contents of passed arguments and returned value from the slave device are indicated for 

each task. 

 

Superscript m indicates that the variables belong to master device. Similarly superscript s shows that the variable 

belongs to slave device. As can be observed from the Table.3, task-1 and task-2 do operation on digital variables. 

Remaining tasks do operation on analog variables.    

 

Table.3: Tasks performed by the SpiMaster function 

SpiMaster Function 

Task: TrackSlave-

Call  
Arguments for TrackSlave function Operation after TrackSlave-Call 

 

Update target register’s 

complement Task  Number  VALU TARE RTVA 

1 [OR02]ᵐ [OR00]ˢ [IR00]ˢ [IR02]ᵐ =RTVAL 

2 [OR03]ᵐ [OR01]ˢ [IR01]ˢ (IR03)ᵐ =RTVAL 

3 [(AO02)low]ᵐ [(AO00)low]ˢ [(AI00)low]ˢ [(AI02)low]ᵐ = RTVAL 

4 [(AO02)high]ᵐ [(AO00)high]ˢ [(AI00)high]ˢ [(AI02)high]ᵐ = RTVAL 

5 [(AO03)low]ᵐ [(AO01)low]ˢ [(AI01)low]ˢ [(AI03)low]ᵐ = RTVAL 

6 [(AO03)high]ᵐ [(AO01)high]ˢ [(AI01)high]ˢ [(AI03)high] ᵐ = RTVAL 

  

 

OnSpiRcv 

OnSpiRcv subroutine is implemented on slave device. It is an interrupt service routine (ISR). It is called each 

time when a one-byte long data is received over SPI-Interface.  The received data is put into the MOSI register. 

It is then checked for valid SPI-Ring Protocol command. If it is a valid command then it is executed. The flow 

chart of the subroutine OnSpiRcv is shown in Fig.4.  
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Fig.4: Flow Chart for the Interrupt Service Routine OnSpiRcv 

 

TESTING THE SPI-Ring PROTOCOL  
In order to test the performance of the SPI-Ring Protocol, two test cases are developed. In test case-1, a simple 

instruction-list PLC program, InToOut, assigning the input channels to the output channels is written. In test 

case-2, a block-diagram PLC program, flashor, simulating some output channels toggling at a specific frequency 

is developed. Both programs visualize the transmitted data and indicate the success of the SPI-Ring Protocol 

 

Test case-1 

In test case-1, the test program InToOut assigns the digital input channels to the corresponding digital output 

channels. That is, 

 IR00 is assigned to OR00 (OR00 ← IR00). 

 IR01 is assigned to OR01 (OR01 ← IR01). 

 IR02 is assigned to OR02 (OR02 ← IR02). 

 IR03 is assigned to OR03 (OR03 ← IR03). 

 

A snapshot from the KUMANDA showing the instruction list of the example program InToOut is given in Fig.5.     
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Fig.5:  SPI-Ring Protocol Test Example-1 

 

Channels on the master device represented by master variables IR00, IR01, OR00 and OR01 lie physically in the 

master device. They are therefore not relevant in testing SPI-Ring Protocol. Channels on the master device 

represented by master variables IR02 and IR03 must be updated from slave channels represented by slave 

variables IR00 and IR01. That means slave input channels are read into the slave input variables IR00 and IR01 

by the slave device. They are then passed through the SPI-Ring Protocol and assigned to master input variables 

IR02 andIR03 respectively.  

 

Similarly output variables IR02 and IR03 on the master device are updated in the PLC program and passed to 

slave output variables OR00 and OR01 through the SPI-Ring Protocol. Then the slave device must update slave 

output channels from slave output variables respectively.   Therefore channels represented by the master 

variables IR02, IR03, OR02 and OR03 are critical in Testing SPI-Ring Protocol simply because these channels 

lie on the slave device.    

 

When any of the input channels is set to high, the corresponding output channel is set to high, or vice versa by 

the program. The states of channels are observable from channel’s led built on the MD100-PLC as the program 

runs. Input channels have green led and output channels have red led.  

   

The photo illustrating the results of the test program InToOut is indicated in Fig.6.  Variation of the input 

channel’s states and corresponding output channel’s states are illustrated through the sub sections 1 to 4 in Fig.6.  

Because input channels are directly assigned to output channels, the states of the output channels must be equal 

to the states of the corresponding input channels. In variation 1, IR02 is set arbitrarily to the binary values 

(100000010)₂ and IR03 is set arbitrarily to the binary values (00000010)₂ by applying 12 volt input voltage to the 

respective input channel’s pins.  It is observed that output channels have the same state as the input channels 

states.  

 

In variation 2, 3 and 4 input channel’s states are changed. Corresponding state changes in output channels are 

observed. All output channels shoved the same states as the input channels as expected.  
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Fig.6:  Result of the test example InToOut running on the Modular MD100-PLC system  
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Test Case -2 

In test case-2, the block-shalt PLC program, flashor, is developed.  The snapshot from the KUMANDA showing 

the block-shalt program, flashor is indicated in Fig.7. 

 

 
Fig.7: Individual channels assignments by the KUMANDA for the program flashor 

SPI-Ring Protocol Test Example 

 

After the compilation of the flashor, KUMANDA produce the instruction list of the block-shalt program 

automatically. The snapshot showing the definition segment of the automatically produced instruction list for the 

block-shalt program flashor is given in Fig.8.  

 

In the flashor, flashing timer T0 set the internal buffer B0 on and off for the period of two seconds continuously 

(one second on / one second off). State of the buffer B0 is transmitted to the slave channels Q12, Q13 and Q14 

over the SPI-Ring Protocol at the end of the each PLC-SCAN.  
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Fig.8: Individual channels assignments by the KUMANDA for the program flashor 

 

In order to control the data transmission in the direction of slave-to-master, slave input channels I10, I11and I12 

are connected to the master output channels Q0, Q1 and Q2. The values of the input channels on the slave device 

should be transmitted back to the master output channels over the SPI-Ring protocol at the end of the each PLC-

SCAN.  

 

When the program is let run, it is observed that slave output channels Q12, Q13 and Q14 are flashing with a 

frequency of 1/2 hertz. Similarly input values on the slave input channels I10, I11 and I12 are seen at the master 

output channels Q0, Q1 and Q2 respectively. This proofs the true data transmission in both directions over the 

SPI-Ring Protocol.   
 

DISCUSSION 
The Time interval for the slave device in successive SpiTransmit function calls is 30 microseconds at the tact 

frequency of 8 MHz. Because SpiTransmit is called four 4 times in a single transaction (TrackSlave) and there is 

a total of 6 transactions in the SpiMaster function, the total amount of the delay for the master is equal to 

30x4x6=720 microseconds. Increasing the tact frequency of the micro controller to 32 MHz shortens this delay 

down to 180 microseconds.  In most cases analog channels are redundant in the slave device. When Analog 

channels are inactivated then only 2 transactions stay in the SpiMaster function. This reduced the total delay to 

60 microseconds.  

 

All of these calculations are based upon pre-declared SPI-Interface frequency (SCLK) of 250 kHz (SCLK is set 

to f/32 where f denotes μC’s tack frequency and set to 8 MHz for the test MD100-PLC board). It is quite 

possible to increase SCLK frequency to f/8. In such cases, SCLK frequency increases to 1 MHz which in turn 

brings the total delay to 15 microseconds. 

 

This is the time interval by which the PLC-cycle is delayed in modular MD100- PLC system as compared to 

single MD100-PLC system. 15 microseconds delay in PLC-Scan time is not always critical for a plenty of 

applications in industry. Such amount of delay can surely be tolerated for gaining doubled I/O lines.  
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CONCLUSION 
The developed SPI-Ring Protocol provides a flexible and economic data transmission between master and slave 

side devices. Although it is specifically developed for the MD100 Programmable Logic Controllers, it can surely 

be adopted for custom controllers performing a specific job and need communication among each other. The 

protocol is extremely tested. It is quick enough for most of industrial applications. Reliable and satisfactory 

results are obtained.  Many devices employing the SPI-Ring Protocol are already installed in industry. They 

proved success in all related aspects.   

 
PROPOSEL FOR FUTURE WORK 

The followings studies are proposed for future work. 

 Expansion of SPI-Ring Protocol for multi-slave system. This can be realized by extending the master 

side of implementation of system functions SpiMaster and TrackSlave. The existing routines can easily 

be passed for multi slave system. For this purpose, the MD100-PLC must slightly be modified to 

incorporate additional /SS lines. 

 Enlarging SPI-Ring Protocol command to two bytes. This provides more application specific 

commands to be categorized. This of course necessities reimplementation of master and slave side 

transmission functions.  

 A different physical interface. Instead of SPI interface in the physical layer, other transmission channels 

such as RS232 or I2C can be implemented.  

 

SYMBOLS & ABBREVIATIONS 
PLC    : Programmable Logic Controller 

μC    : Micro Controller  

MD100-PLC   : MD100 Programmable Logic Controller  

AVR-MEGA   : μC series from producer ATMEL  

AVR-MAGA32    : μC from producer ATMEL 

SPI     : Serial Peripheral Interface 

RS232    : Recommended Standards for serial Transmission 232    

Virtual PLC-Machine  : Firmware, building PLC system on micro controller 

IO    : Input / Output  

SCLK    : Serial Clock in SPI-Interface 

MOSI    : Master Out Slave In Register   

MISO    : Master In Slave Out Register  

/SS     : Slave Select in SPI-Interface  

INPUT-SCAN    : Input Channel’s Scan 

PROGRA-SWEEP  : Time Interval to run application program once  

OUTPUT-SCAN   : Output Channel’s Update 

SYSTEM-SCAN   : System Interface  

SPI-Ring Protocol  : Data Exchange Protocol over SPI-Interface 

OR00    : Digital Output System Register-00 [Output Channels 0 to 7] 

OR01    : Digital Output System Register-01 [Output Channels 8 to 15] 

OR02     : Digital Output System Register-02 [Output Channels 16 to 23]  

OR03     : Digital Output System Register-03 [Output Channels 24 to 31]  

IR00     : Digital Input System Register-00 [Input Channels 0 to 7]  

IR01     : Digital Input System Register-01 [Input Channels 8 to 15] 

IR02     : Digital Input System Register-02 [Input Channels 16 to 23]   

IR03     : Digital Input System Register-03 [Input Channels 24 to 31] 

AI00     : Analog Input System Register-00[Analog input channel 0]  

AI01     : Analog Input System Register-01[Analog input channel 1]  

AI02     : Analog Input System Register-02[Analog input channel 2] 

AI03     : Analog Input System Register-03[Analog input channel 3] 

AO00     : Analog Output System Register-00[Analog output channel 0] 

AO01     : Analog Output System Register-01[Analog output channel 1] 
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AO02     : Analog Output System Register-02[Analog output channel 2] 

AO03     : Analog Output System Register-03[Analog output channel 3] 

NOP     : No-Operation Command 

XL     : Low nibble of X Register in AVR-MEGA μC architects 

XH     : High nibble of X Register in AVR-MEGA μC architects 

YL     : Low nibble of Y Register in AVR-MEGA μC architects 

YH     : High nibble of Y Register in AVR-MEGA μC architects 

X     : X Register in AVR-MEGA μC architects 

Y     : Y Register in AVR-MEGA μC architects 

DATR     : Data Register in MD100-Register file 

VALU     : Value Register in MD100-Register file 

TARE     : Target Register in MD100-Register file 

RTVA    : Return-Value Register in MD100-Register file 

S0     : Sub-Command 0 of SPI-Ring Protocol Command SBC 

S1     : Sub-Command 1 of SPI-Ring Protocol Command SBC 

S2     : Sub-Command 2 of SPI-Ring Protocol Command SBC 

S3     : Sub-Command 3 of SPI-Ring Protocol Command SBC 

S4     : Sub-Command 4 of SPI-Ring Protocol Command SBC 

S5     : Sub-Command 5 of SPI-Ring Protocol Command SBC 

S6     : Sub-Command 6 of SPI-Ring Protocol Command SBC 

S7     : Sub-Command 7 of SPI-Ring Protocol Command SBC 

S8     : Sub-Command 8 of SPI-Ring Protocol Command SBC 

S9     : Sub-Command 9 of SPI-Ring Protocol Command SBC 

SA     : Sub-Command A of SPI-Ring Protocol Command SBC 

SB     : Sub-Command B of SPI-Ring Protocol Command SBC 

SC     : Sub-Command C of SPI-Ring Protocol Command SBC 

SD     : Sub-Command D of SPI-Ring Protocol Command SBC 

SE     : Sub-Command E of SPI-Ring Protocol Command SBC 

SF     : Sub-Command F of SPI-Ring Protocol Command SBC 

GM     : SPI-Ring Protocol Command Get-Miso 

DT     : SPI-Ring Protocol Command DaTa 

LD     : SPI-Ring Protocol Command Load-Data 

d/a     : digital/analog, 0 digital, 1 analog.  

i/o      : input/output, 0 input,   1 output. 

h/l      : high/low,  0 high, 1 low.  

(d d d d)    : data bits, in MOSI byte (0 – 15 decimal value ). 

(r  r  r  r )   : register index in MOSI byte (0 – 15 decimal value).  

(-)    : don’t care bit, position not checked and filled with 0.  

Opcode    : Operation Code for SPI-Ring Protocol command 

C0     : Bit-0 (Least Significant Bit)  

C1     : Bit-1 

C2     : Bit-2 

C3     : Bit-3 

C4     : Bit-4 

C5     : Bit-5 

C6     : Bit-6 

C7     : Bit-7 (Most Significant Bit) 

KUMANDA   : Developing Environment for the MD100-PLC on PC. 

f    : Tact frequency of the μC 
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